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Abstract This paper presents an adaptive output-feedback control method for 

non-affine nonlinear non-minimum phase systems that have partially known 

Lipschitz continuous functions in their arguments. The proposed controller is 

comprised of a linear, a neuro-adaptive and an adaptive robustifying control term. 

The adaptation law for the neural network weights is obtained using the 

Lyapunov’s direct method. One of the main advantageous of the proposed method 

is that the control law does not depend on the state estimation. This task is 

accomplished by introducing a strictly positive-real augmented error dynamic and 

using the Leftshetz-Kalman-Yakobuvich lemma. The ultimate boundedness of the 

error signals will be shown analytically using the extension of Lyapunov theory. 

The effectiveness of the proposed scheme will be shown in simulations for the 

benchmark problem Translational Oscillator/Rotational Actuator (TORA) system.  
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1  Introduction 

Control of nonlinear non-minimum phase systems is a difficult task in control 

theory. This problem has been an active research area for many years. Several 

fundamental methods have been proposed in this area based on the state-feedback 

control, including output redefinition and zero assignment [1-3], stable inversion, 

and iterative learning control for systems with predefined reference signals [4-6]. 

Moreover, sliding mode control method [7], neural networks, and fuzzy logic [8-

10] have been applied successfully to control uncertain non-minimum phase 

systems.  

In the case of output feedback control, the problem is more complicated. Unlike 

linear systems, state observation for nonlinear systems is often not an easy task, 

even for some simple nonlinear systems. For some nonlinear systems, the observer 

error dynamic becomes linear [11]. The main issue in output feedback control of 

non-minimum phase systems stems from the fact that information on the state 

variables, associated with the zero dynamics, is vital in the control design. Marino 

and Tomei have considered a special case of this format for the systems in output 

feedback form [12]. 

Recently, some researchers have proposed methods for output-feedback 

stabilization for uncertain non-minimum phase systems. Isidori [13] has proposed a 

solution for semi-global output-feedback stabilization of non-minimum phase 

systems based on auxiliary constructions using a high-gain observer. Global 

output-feedback stabilization using the backstepping and the small-gain techniques 

are employed by Karagiannis et al. [14], and Wang et al. [15]. Ding has proposed a 

design method for semi-global stabilization of a class of non-minimum phase 

nonlinear systems that can be transformed to the global normal form as well as to 

the form of linear observer error dynamic [16]. Sliding mode observer and output 

feedback sliding mode control is applied by Yang [17]. Hovakimian et al. have 

considered the output feedback control of a more general class of non-minimum 

phase nonlinear system based on universal approximation properties of NN and 

using a high-order error observer [18]. 

This paper presents an adaptive output-feedback control method for observable 

and stabilizable nonlinear non-minimum phase systems. The proposed method does 



not relay on state estimation. Moreover, only an approximate linear model of the 

nonlinear system is required in the design procedure with some mild conditions. 

This linear model should present the non-minimum phase zeros of the nonlinear 

system with some acceptable accuracy. In fact, there is a conic sector bound on the 

modelling error of the non-minimum phase zeros that is referred to as the 

unmatched uncertainty. Hence, the proposed approach can be applied to uncertain 

systems, which have partially known Lipschitz continuous functions in their 

arguments. 

In the design procedure, first, a linear tracking controller is designed for the 

linear approximation of the system such that the closed-loop system represents a 

desired reference model. Then, the linear controller is augmented with a neuro-

adaptive element, which is used to approximate the matched uncertainty. The NN 

operates over tapped-delay units, comprised of the system input/output signals. The 

adaptation rules for the NN weights usually require the state variables of the 

system [19, 20]. However, designing an observer to estimate the state variables is 

not an easy task for nonlinear systems. To avoid state estimation, this paper 

introduces a Strictly Positive Real (SPR) augmented error dynamic and uses the 

Leftshetz-Kalman-Yakobuvich (LKY) Lemma to substitute the state variables with 

this augmented error, which comprises of two parts: the available part and the 

unavailable part. The latter part increases the ultimate bound of the error and 

decrease the rate of convergence of the error signals. To compensate the 

unavailable part of the augmented error as well as the approximation error of the 

NN, an additional adaptive robustifying control term Ru  will be incorporated into 

the control law.  

This paper is organized as follows: Section 2 describes the class of nonlinear 

systems to be controlled and defines the problem of tracking. Section 3 presents 

procedure for the controller design and approximation properties of the NN. 

Section 4 provides the analytical work about stability of the closed-loop system. 

Section 5 gives simulation example, which illustrates the effectiveness of the 

proposed controller. Finally, Section 6 concludes the paper. 

 

 



2  Problem Statement 

Consider the nonlinear SISO system in the following normal form [12]: 

( )
( )

1

1

1 1
, ,

,
,

i i

r

z z i r
z f u

y z

+= ≤ ≤ −
 =


=
 =

z η

η v z η

&
&
&

                                             (1) 

where r is the relative degree, n rRη
−∈Ω ⊂η  is the state vector associated with the 

internal dynamics, [ ]1, , ,T r
r zz z R= ∈Ω ⊂z L  ηΩ  and zΩ  are the compact sets of 

the operating regions, and u R∈  and y R∈  are the input and the output of the 

system, respectively. The mappings 1: nf R R+ →  and : n n rR R −→v are partially 

known Lipschitz continuous functions of their arguments with the initial conditions 

( ), ,0 0f =0 0  and ( ), =v 0 0 0 . Note that the system in (1) may be non-minimum 

phase. Hence, the stability assumption on the zero dynamics is not required. The 

goal is to design a combined adaptive controller such that the output tracks a 

desired reference signal dy  with bounded tracking error. Moreover, the internal 

dynamics of system must remain stable. Next section presents various features of 

the proposed control method. 

 

3  Controller Design 

3.1 Model expansion 

Since the mappings 1: nf R R+ →  and : n n rR R −→v are partially known Lipschitz 

continuous functions of their arguments, system in (1) can be represented as the 

following expanded model: 
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where m and n are coefficient vectors, F and G are matrices, all with appropriate 

dimensions, ( ), ,uψ z η  is an uncertain function such that 0uψ∂ ∂ ≠  over the 

compact set z RηΩ × Ω ×  and with a known upper bound for uψ∂ ∂ . Also 

( , )ηΔ z η  denotes the vector of internal-dynamic modelling error or the unmatched 

uncertainty, which is assumed to be bounded with a conic sector bound as in the 

following assumption. 

 

ASSUMPTION 1: The unmatched uncertainty is bounded with a sector bound as 

( )0 1 2( , ) , zd d d η≤ + + ∀ ∈Ω × ΩηΔ z η z η z η ,             (3) 

where ( 0,1, 2)id i =  are known positive constants.    

  

Let ( )ˆ ,y uψ   be the best available approximation of ( ), ,uψ z η . Consider the 

following pseudo control:  

( )ˆ ,y uυ ψ= .                                                   (4)  

It should be mentioned that the model approximation function ˆ ( , )ψ ⋅ ⋅  should be 

invertible with respect to u, allowing the actual control input to be computed by 

( )1ˆ ,u yψ υ−=                                                   (5) 

Then, the modelling error of ψ is 

    ( ) ( ) ( )ˆ, , , , ,u u y uψ ψ∆ = −z η z η .                              (6) 

Let define the pseudo control law in (4) as 

: L ad Ru u uυ = − − ,                 (7) 

where Lu , adu  and Ru  are the linear, the neuro-adaptive and  the robustifying 

control terms, respectively. Using (4), (6) and (7), the system in (2) can be 

described as  
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Here, the modelling error ∆  acts as the matched uncertainty. Notice that, since the 

system is non-minimum phase, some eigenvalues of F have positive real parts.  

 

3.2 Construction of error dynamic  

Consider the linear model of the system in (8) as 
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ASSUMPTION 2:  There exists an output feedback tracking linear controller for 

the linear dynamic (9) that satisfies the performance 

requirements. 

 

A necessary condition for existence of such controller is that the system has no 

zeros at the origin. Let this linear controller be defined as [21] 

( ) ( )
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S s T su y y
R s R s

− +@ ,                                         (10) 

where dy  is the desired output, S and R are designed to assure stability of the close-

loop system, and T is designed to achieve the desired tracking. The state-space 

form of this controller is 
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The linear model (9), regulated by (11), defines a closed-loop reference model 

as 
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where [ , , ]T T T T
l l l clx z η x@ , in which clx denotes the vector of state variables of the 

controller  (11), when  applied to linear system (9).  



The closed-loop dynamic of the nonlinear system in (8), when regulated by the 

linear controller (11), can be written as  
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where [ , , ]T T T T
cx z η x@ ,  
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Using (12) and (13), and defining the error vector as 

l −ξ x x@ ,                                                (14) 

the error dynamic can be represented as 
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where ρ  is the available output error signal containing the output tracking error 

le y y= −  and the state variables associated with the controller error cl c−x x . 

Hence, the output vector has the following form: 

 1 1 ( 1) 1 ccl n n n nc c c× − + + =  c 0 L ,                               (16) 

where cn  is the order of the dynamic tracking controller in (11). Note that if 

(2 )i i n≤ ≤ξ  is also available (i.e., beside the system output, other state variables 

of the system are also accessible), then the corresponding ic  should be set to a 

suitable non-zero value, which will be determined in next section. 

The objective of this paper is to design adu  and Ru  such that the system output 

y tracks the reference signal dy . The error dynamic ξ is derived in this section and 

in Section 4, the ultimate boundedness of this error signal will be shown using the 



Lyapunov’s direct method. Then, since ly  tracks dy  by Assumption 2, this ensures 

that y  tracks dy  with a bounded error trajectory. 

 

3.3.  CONSTRUCTION OF SPR TRANSFER FUNCTION 

Consider the error dynamic in (15). If the following transfer function is Strictly 

Positive Real (SPR): 
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ad R

G s
u u

ρ
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∆ − −
,                                         (17) 

then, by applying the Leftshetz-Kalman-Yakobuvich (LKY) lemma, the 

measurable signal ρ  can be used instead of the state variable vector ξ  to construct 

the control terms adu  and Ru . However, because of the non-minimum phase 

properties of the system in (1), the closed-loop transfer function (17) cannot be 

SPR [22].  

Now, let define the augmented error dynamic output as 

ag ag aρ ρ ρ= = +c ξ                                           (18) 

such that ( ) 1( )ag ag cl clG s s −= −c I A b  represents a SPR transfer function. Since clA  

is a stable matrix, one can always find a agc  to ensure the strictly positive realness 

of ( )agG s . The error dynamic output in (18) can be considered as a combination of 

the available signal ρ  defined in (15) and an unavailable error signal a aρ = c ξ , 

which can be considered as a disturbance term. 

It will be shown in Section 4 that the ultimate error bound increases and the rate 

of the error convergence decreases proportional to aρ . Let define the following 

bound for aρ : 

0 1aρ λ λ ρ≤ + ,                                              (19) 

where 0λ  is a positive constant and 10 1λ≤ < . As it will be shown in the proof of 

the theorem, the ultimate error bound increases and the rate of error convergence 

decreases proportional to 0λ  while 1λ ρ  can be compensated using the 

robustifying control term Ru . Note that, it is always possible to found such 



constants; and in the worst case, ( )0 sup ( )a
t

tλ ρ=  with 1 0λ =  satisfies inequality 

(19). Hence, to achieve the smallest value of 0λ , it is desired to select output 

vectors such that aρ  (or alternatively ac ) is minimized with respect to clc . 

( )agG s  is SPR if and only if it complies with the LKY lemma. I.e., there should 

exists a matrix 0T= >Q Q  such that the solution P of  

T
cl cl =+ −A P PA Q                                             (20) 

is positive definite and  

T
ag cl=c Pb .                                                  (21) 

For practical purposes, a simple optimization algorithm is given in Appendix to 

find the appropriate values for clc  and ac . 

 

3.4  Neural network-based adaptive controller design 

The term adu  in the control law (8), is designed to approximate the modelling 

error ( , , )u∆ z η . Hence, there exists a fixed-point problem as 

( )1ˆ( ) , , ( , ( ) )ad ad R Lu t y u t u uψ −= ∆ − − +z η                      (22) 

The following assumption provides conditions that guarantee the existence and 

uniqueness of a solution for adu  [23]. 

 

ASSUMPTION 3: The map adu → ∆  is a contraction over the entire input domain. 

This means the following inequality should be satisfied 

1
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∂∆
<

∂
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Substituting (4), (6) and (7) into (23), yields    
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It is straightforward to show that condition (24) is equivalent to 

the following three conditions: 
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In the following lemma, it will be shown that a neural network based on the 

input-output data only can approximate the modelling error ( , , )u∆ z η . Moreover, 

it will be proved that if any non-affine system satisfies conditions (23), then it is 

unnecessary to use ( )adu t  as an input signal to NN.  

 

Lemma 1  If conditions (23) are satisfied, then, the modelling error ( , , )u∆ z η can 

be approximated by a single hidden layer MultiLayer Perceptron (MLP) as 

( )* *T Tw σ V ζ , where * mR∈w  is the vector containing synaptic weights of the 

output layer, * N mR ×∈V  is the matrix containing the weights of the hidden layer, 

[ ]1
T

m=σ Lσ σ is the vector function containing the nonlinear functions in the 

neurons of the hidden layer, and NR∈ζ  is the input vector, which is equal to 

[ ]1 ,T
adα=ζ y u u where 
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in which .ad L Ru u u uα υ= + = −  

Proof  Under the observability condition of the system in (1), it has been shown by 

Lavertsky et al. that the continuous-time dynamic ( , , )u∆ z η can be approximately 

reconstructed using delayed inputs-outputs as [24]: 

( ) 1( , , ) F ,u y υ ε∆ = +z η ,                                  (27) 

where 

[ ]1 1( ) ( ) ( ( 1)) ,d dt t T t T n r n nυ υ υ υ= − − − − ≥L , and 1 1Mε ε≤ , in which 

1Mε  is proportional to the sampling time interval dT , and F( , )⋅ ⋅  is a non-linear 

function of its arguments. Hence, the approximation error 1ε  can be ignored by 



selecting dT  sufficiently small. On the other hand, conditions (23) guarantee 

existence and uniqueness of a solution for adu  from the following equation: 

( , , , ) ( , , ) ( ) 0ad adu u u u tΦ ∆ − =z η z η@ .                        (28) 

Differentiating Φ  with respect to adu and using (4) and (6) yields 
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which is nonzero over the set z RηΩ × Ω × according to (4) and definition of ψ  

given in (2). Thus, from (29), using (27), and according to the implicit function 

theorem, the following equation: 

( ) ( ), , ( ) F , ( ) ( ) 0ad ad ad adu u t y u u u t u tα∆ − = + + − =z η ,               (30) 

implies that there exists a unique solution for adu  over the set z RηΩ × Ω × as 

( ) ( , , )ad adu t y u uα= Γ .                                     (31) 

Now, substituting (31) into (30) yields  

( ), , ( )u∆ = Γz η ζ .                                       (32) 

On the other hand, any sufficiently smooth function can be approximated on a 

compact set with arbitrarily bounded error by a suitable large MLP. Therefore, a 

set of ideal weights *w  and *V  on the compact set ∆Ω  exist such that 

( ) ( )* *
2, , ( ) , , ,T Tu uε ∆∆ = + ∀ ∈Ωz η w σ V ζ z η ,                  (33) 

where 2 2Mε ε≤  in which 2Mε  depends on the network architecture. The ideal 

constant weights *w  and *V  are defined as 
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where ( ){ }F
,, M MΩ = ≤ ≤w w Vw V w V , in which Mw  and MV  are  positive 

numbers and 
F

⋅  denotes the Frobenius norm.                                                         □ 

Since ∆  can be modelled using a MLP, the adaptive control term is proposed as 



( )T T
adu = w σ V ζ ,                                          (35) 

where w  and V  are the actual weights of their corresponding ideal weights 

defined in (34). Hence, in practice, the weights of the NN may be different from 

the ideal ones. Therefore, an approximation error exists.  

 

Lemma 2 If the activation function ( )σ ⋅  is of sigmoid type functions, then the 

approximation error arising from the difference between (33) and (35) satisfies the 

following equation: 

( ) ( )( , , ) tr ( )T T T T
adu u tδ∆ − = − + +ν νz η w σ σ V ζ V ζw σ%% ,              (36) 

where 

( )2 F
( ) 2

,

M

*

*

t mM M M

=
=

δ ε≤ + + +

−

−

w w VV ζ w ζ

w w w
V V V

% %

%
%

                   (37) 

and [ ]1 1 1diag ( ) ( )m m mσ ν ν σ ν ν∂ ∂νσ @ L  is the derivative of σ  with respect 

to the input signals ( 1, , )i i mν = … , in which 1[ ]T T
mν ν = V ζL , and m denotes 

the number of neurons in the hidden layer. 

Proof  The Taylor series expansion of *( )Tσ V ζ  gives 

*( ) ( ) ( ) ( ) ( )T T T T T T= + = + + ⋅νσ V ζ σ V ζ V ζ σ V ζ σ V ζ V ζ O% % ,               (38) 

where ( )⋅ ∈O mR  denotes the vector associated with high order terms.  

The activation function in the neurons of MLP is of sigmoid type functions (e.g. 

logistic function 1
1 ie αν−+

 or tanh( )iαν ). Hence, 1iσ ≤  and ( )i i iσ ν ν α∂ ≤ . 

Consequently, it is straightforward to show that m≤σ and α≤νσ . Using 

these inequalities and (38) it is easy to conclude that ( )⋅O  is also bounded and 

can be represented as 

*

F
( ) ( ) ( ) ( ) 2 .T T T T m α⋅ = − − ≤ +νO σ V ζ σ V ζ σ V ζ V ζ V ζ% %           (39) 

Therefore, the approximation error can be calculated as 
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where 

* *
2( )T T Tδ ε+ ⋅ +νw σ V ζ w O%@ . 

Now, using (34), (39), and the fact that α≤νσ , it gives  
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The adaptation rules for the weights of the neuro-adaptive controller adu  in (35) 

is proposed as   

( )( )
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where γ w  and γ V   are learning coefficients, and kw  and kV  are σ -modification 

gains.  

 

Remark 1 It will be shown in Section 4 that the derivate of Lyapunov function is 

negative outside a compact set. In this case, to avoid the persistence excitation 

condition of inputs to the NN and to guarantee boundedness of w%  and V% , the σ -

modification terms was considered in the tuning rules given in  (40) [20, 25]. 

Lemma 3 The approximation error of the NN has the following upper bound: 

2( , , ) 2ad Mu u m M ε∆ − ≤ +wz η                               (41) 

Proof  Using (33) and (35), it can be written 

( ) ( )

( ) ( )

( ) ( )

* *
2

* *
2

* *
2

( , , ) T T T T
ad

T T T T

T T T T

u u ε

ε

ε

∆ − = + −

≤ + +

≤ ⋅ + + ⋅

z η w σ V ζ w σ V ζ

w σ V ζ w σ V ζ

w σ V ζ w σ V ζ

 



Next, considering the facts that M≤ ww , 2 2Mε ε≤ , and m≤σ , it can be 

obtained 

2( , , ) 2ad Mu u m M ε∆ − ≤ +wz η .                                   □ 

 

3.5 Adaptive robustifying controller  

Using the neuro-adaptive control term adu  with adaptation rules in (40), the 

matched uncertainty ∆  cannot be completely compensated for and there exists 

approximation error ( )tδ , which can increase the ultimate error bound. Moreover, 

the error aρ  can also have the same effect on the ultimate error bound. In order to 

compensate for these errors, an adaptive robustifying control term Ru  is 

incorporated into the control law. 

First, consider that the upper bound on the NN approximation error plus the 

compensable part of  aρ  can be derived using (37) and (41) as 

( )
( )

( )( )

( )( )

( )( )

1 2

1 2F

2 1

FF

2 1

F

F
* *

2

2

2 1

2 1

1 1 ,

*
ad M

*
M

*
M

*

M

u mM M

M m M

mM M

M M M

mM M M

M M M M

δ λ ε α

α λ ε

ε λ α

α α α

ε λ α

α α α

ϕ ϕ χ

+ ∆ − ≤ + + −

+ − + +

≤ + + +

+ + +

≤ + + +

+ + +

≤ + + + =

w V

w w

w V

V w w

w V w

V w V w

w w ζ

V V ζ

w ζ

w ζ V ζ V ζ

ζ

w ζ ζ V ζ

ζ V w

              (42) 

where 10 1λ< <  is the same as in (19), and 

( )( ){ }
( )

*
1 2

F

max 1 2 , , ,2 ,

1 1 .

M mM M M M Mϕ λ ε α α α

χ

+ +

+ + +

w w V V w

ζ V w

@

@
 

Hence, 1 aduδ λ+ ∆ −  is bounded to the multiplication of the known function χ  

and the unknown gain *ϕ . 

Now, the following adaptive robustifying control term is introduced: 

( )
1

1 sign
1Ru ϕ χ ρ

λ
=

−
,                                       (43) 



with the following adaptation rule: 

ϕϕ γ χ ρ=& ,                                                                                            (44) 

where ϕ  denotes estimation of the unknown gain *ϕ  and ϕγ  is the adaptation 

coefficient. 

 

Remark 2 It is well known that due to the universal approximation property of 

NNs, the approximation error is bounded. Hence, it is always possible to find a 

positive constant MU such that      

R Mu U≤                                                   (45)                                                                     

 

4  Stability Analysis 

In this section, it is shown that the closed-loop error dynamics are ultimately 

bounded. The analysis is based on substituting the state vector ξ  with the SPR 

augmented error agρ  using the LKY lemma. 

DEFINITION: Let ∆Ω  be the compact set defined in (33) and r∆Ω  be the largest 

hypersphere in the error space , , ,
F

ϕ =  E ξ w V% %% , defined as 

{ }r r∆∆
Ω ≤E E@                                            (46) 

such that for every r∆∈ΩE  there exists ( ), , u ∆∈Ωz η , where r∆  is 

a positive number. 

 

ASSUMPTION 4:  Assume that the following inequality holds: 

m Mr S S r∆< ,                                             (47) 

where mS  and MS  are the minimum and the maximum 

eigenvalues of the following matrix, respectively:  

1

1

1

0 01
0 02
0 0 ϕ

γ
γ

γ

−

−

−

 
 
 =
 
 
  

w

V

P 0 0 0
0

S
0
0

. 

r will be defined in the proof of the following Theorem. 



 

Theorem Consider the linear controller in (11), the neuro-adaptive control term 

adu  in (35)   with adaptation rules in (40), and the robustifying control term Ru in 

(43) with adaptation rules in (44).  If Assumptions 1- 4 hold and the initial error 

E(0) belongs to the compact set in (46), then the  errors ξ , w% ,  and V%  in the 

closed-loop system are uniformly ultimately bounded. 

 

Proof   Let candidate the following Lyapunov function: 

222
F

1 1 1 1
2 2 2 2

TL
ϕ

ϕ
γ γ γ

= + + +
w V

ξ Pξ w V% %% ,                      (48) 

where the symmetric matrix P is the unique positive-definite solution of (20) and 

ϕ%  is defined as *ϕ ϕ ϕ−% @ , where *ϕ   and ϕ  are the same as before. Moreover, 

recall that *w  and *V  are the ideal constant weights for the NN defined in (34). 

Then, Eq. (37) yields = −w w&& %  and = −V V&& % .  

Using (15), the time-derivative of (48) becomes 

( )

( )

1
2

1 1 1tr .

T T
cl ad R cl

T T

L u u

ϕ

ϕϕ
γ γ γ

= − + ∆ − − +

− − −

T
η

w V

ξ Qξ ξ Pb ξ PG Δ

w w V V

&

% & % &% &
                  (49) 

Using (18), (21) can be written as 

T
cl ag aρ ρ ρ= = +ξ Pb .                                         (50) 

By substituting (36) and (50) into (49), L&  becomes 

( ) ( )( )
( ) ( )

1 tr
2

1 1 1tr .

T T T T
R

T T T
a ad R cl

L u

u u
ϕ

ρ δ

ρ ϕϕ
γ γ γ

= − + − + + +

− − + ∆ − − − +

T

η
w V

ξ Qξ w σ σV ζ V ζw σ

w w V V ξ PG Δ

& %% & &

% & % &% &
   (51) 

Using (14), the upper bound of the modelling error, defined in (3), can be 

represented as 

( ) ( )( )0 1 2 0 1 2( , ) ld d d d d d≤ + + ≤ + + +ηΔ z η x ξ x .            (52) 

Since the closed-loop reference model in (12) is stable, it is always possible to 

find a positive constant 3d , which satisfies 3l d≤x ; then, substituting this into 

(52) yields 



0 1 0 0 1 3 1 1 2( , ) , , .d d d dα α α α α≤ + = + = +ηΔ z η ξ                (53) 

Substituting (53) and the robustifying control term (43) into (51) gives 

( )

( )

( )

2

1

1 1 0 0 1
1

1 1
2

1tr tr
1

1 ,
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T T T
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 
≤ − + − − − + 

 
  

+ − − + + −    −  

+ ∆ − + + − + +
−

w w
w

V V
V

ξ w σ σV ζ w w w w

V ζw σ V V V V

PG ξ ξ

& % & & %

% & %&

% &

   (54) 

where mQ  denotes the smallest eigenvalue of the matrix Q  and 

12M M MmM Uβ ε+ +w@  is the upper bound of ad Ru u∆ − −  that can be derived 

using (41) and (45) . 

Using the adaptation rules in (40) and the bound defined in (42), L&  becomes 

( )

22 2
1

*
0 0

1
2

1 .

m cl

M cl

L Q k k k M

k M
ϕ

α

ρ χ ϕ ϕ ϕϕ λ β α
γ

 ≤ − − − − +  
 

+ + − − + +   

w V w w

V V

PG ξ w V w

V PG ξ

& %% %

% % &
        (55)  

Using the adaptation rule in (44) and completion of the square terms gives 

( ) ( )
22 21 1L A k k R≤ − − − − − +ξ w Vξ w V& %% ,                       (56) 

where 

( ) ( ) ( )

1

22 2
0

0

1 1
2

4 4 4

m cl

cl
M

A Q

k M k M
R

α

α
λ β

 − − 
 

+ + +

ξ

w w V V

PG
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@

@

                (57) 

Let 1α , defined in (53), be sufficiently small such that matrix Q ensures the 

following condition: 

( )min 12 2clλ α> +Q PG .                                    (58) 

Moreover, let 1k >V  and 1k >w . 

Now, let define the following compact set around the origin 

{ }r rΩ ≤E E@ ,                                          (59) 

where  



max , ,
1 1

R R Rr
A k k

 
  − − ξ w V

@ .                               (60) 

Equation (56) shows that 0L ≤&  once the errors are outside the compact set rΩ . 

Now, consider the Lyapunov function (48), which can alternatively be written as 

TL = E SE , where E  and S  are the same as given before and 

( )2 2
m MS L S≤ ≤E E E , in which mS  and MS  are the smallest and the largest 

eigenvalues of S, respectively. Let ML  be the maximum value of the Lyapunov 

function L on the boundary of 2:r M ML S rΩ =  and mL  be its minimum value on 

the boundary of  2: m mr L S r∆∆
Ω = . If M mL L<  or equivalently Assumption 4 holds, 

then it can be concluded that r r∆Ω ⊂ Ω . This ensures that if initially the error is 

inside r∆Ω  (i.e. (0) r∆∈ΩE ), then according to the standard Lyapunov theorem 

extension, the error trajectory ( )tE  is ultimately bounded [19, 26].                  □ 

 

Corollary The system output y tracks the reference signal dy with bounded error 

trajectory.   

Proof  Consider the following compact set: 

.R
A

  Ω ≤ 
  

ξ
ξ

ξ ξ@  

From (56), it can be seen that L&  is strictly negative as long as ξ  is outside the 

compact set Ω ξ .  Therefore, there exists a constant time T  such that for t T>  the 

error vector l= −ξ x x  converges to Ω ξ  [19]. This means that the error is bounded 

to R A≤ ξξ . Moreover, all signals in the reference model (12) are bounded and 

( ) 0d ly y− →  as t → ∞  according to Assumption 2. This ensures that 

( )dy y ε− →  as t → ∞ , where R Aε ≤ ξ .                                               □ 

Remark 3 When the exact value of coefficient matrices , ,m n F  and G  in the 

expanded model (2) are not available (e.g. due to parameters uncertainty), the 



estimated values ˆˆ ˆ, ,m n F  and Ĝ  may be used to design the linear controller. In 

this case, some modelling errors (arise from the difference between the real and the 

estimated value of coefficients) can be embodied in ∆  and ηΔ , while assumptions 

1 and 3 are satisfied. Moreover, it is important to point out that in order to design 

the controller, it is not necessary to have a normal form of the plant as in (1), and 

only a linear approximation, which satisfies assumptions 1, 2 and 3, suffices. 

 

Remark 4 It will be shown in the followings that conditions (47) and (58) can be 

satisfied easier by increasing the rate of convergence of the error dynamic. Let 

define new state variables as 1−=ς T ξ  where T  is defined such 1
cl cl

−=Λ T A T  

represents a diagonal matrix. Replacing ξ  by ς  in (15) and repeating the proof of 

the Theorem, results in a similar condition as in (58) 

( )min 12 2clλ α′ ′ ′> +Q T P G ,                               (61) 

where ,T′ =Q T QT  T′ =P T PT  and 1
cl cl

−′ =G T G . 

From (13), ( )max 1T
cl cl clλ= =G G G  and T′ ′=P P . Hence, 

1 1
max ( )cl cl λ− −′ ′ ′ ′≤ =P G P T G P T .                        (62) 

On the other hand, one can conclude that max ( ) 0T
cl clλ + <Λ Λ . Therefore, [27] 

max
max

max

( )( )
( )T

cl cl

λ
λ

λ
′

′ ≤
+
QP

Λ Λ
.                                  (63) 

Substituting (62) and (63) into (61), it can be represented in a new form as 

1
1 max

min
max

2 ( )
( ) 2

( )T
cl cl

α λ
λ

λ

− ′
′ > +

+

T T Q
Q

Λ Λ
                           (64) 

As Eq. (64) implies, condition (58) or equivalently (61) may be satisfied with 

smaller value of min ( )λ ′Q  for a fixed value of 1α , by increasing the rate of 

convergence of the error dynamics (i.e. acquiring larger eigenvalues for clΛ or 

alternatively for clA ). This can be achieved by designing suitable controller in 

(11). Moreover, in the 7th step of the optimization algorithm (presented in 

Appendix), the constrain may be satisfied by smaller values for min ( )λ ′Q ; this 



yields smaller values for J and consequently ac , which is the output vector of the 

unknown error dynamics aρ  that is derived in the optimization algorithm given in 

Appendix. Hence, it decreases ( )0 sup ( )a
t

tλ ρ= . Consequently, according to (57) 

and (60), the error bound r decreases, which helps to satisfy Assumption 4.  

 

Remark 5 The definition of R in (57) shows that the ultimate error bound mainly 

depends on the unmatched uncertainty ( )2
0 4clα PG  and the multiplication of 

the NN approximation error bound ( Mβ ) and 0λ . As it is stated in Remark 4, 

acquiring larger eigenvalues for clΛ  (or alternatively for clA ) helps to achieve 

smaller values for 0λ , which consequently reduces R and r. On the other hand, 

when the NN begins to learn, the upper bound of the NN approximation error 

( Mβ ) will decrease; consequently 0 Mλ β  decreases. However, the term 

( )2
0 4clα PG  always exists and cannot be reduced by the control design. In fact, 

in order to compensate effects of the unmatched uncertainty, it is necessary to 

design a special reference signal like ( , )dy η z  (similar to the backstepping 

approach). However, in this case, only the stability of the system may be achieved 

and the tracking ability will be lost. This drawback is shared by the NN control 

methods in which the reconstruction error of the NN is not compensated for 

because the NN tracking problem of nonlinear non-minimum phase systems is due 

to the existence of the unmatched uncertainty or the modelling error of internal 

dynamics. 

 

Remark 6 As Eq. (57) shows, the unmatched uncertainties and the auxiliary error 

term aρ  (embodied in constants 0α  and 0λ ) can increase the error bound. If 

0 0α =  and 0 0λ = , then by setting 0k k= =w V  in the adaptation rules (40) 

asymptotic stability can be achieved. In this case, since 0L >  and  0L ≤&   the 

boundedness of adaptive weights w% , V% and ϕ%  (and hence w , V  and ϕ )  can be 

directly concluded.  

 



Remark 7  When a discontinuous input signal is applied to a system, the chattering 

phenomenon appears. Many methods have been proposed in literatures to reduce 

the chattering including continuous approximation of the discontinuous input 

signal. A continuous approximation of ( )sgn ρ  in (43) is ( )tanh ρ ε  or 

alternatively ( )ρ ρ δ+  where 0ε >  and 0 1δ< < . However, using these 

continuous functions might increase the ultimate error bound proportional to ε and 

δ . 

The block diagram of the proposed control method is depicted in Fig. 1.  

 

5   Simulation  Example 

Performance of the proposed controller is shown through simulations using the 

TORA system, which is a nonlinear non-minimum phase system. First, 

stabilization of the system is performed in order to compare the results with the 

backstepping method, which has been proposed in reference [14]. Then, the 

tracking of a reference signal is sought for this system.  

This system, depicted in Fig. 2, is described by the following equations [8, 14]: 

2

2

( ) ( cos sin )
( ) cos ,
M m x ml k x
J ml ml x

θ θ θ θ

θ θ τ

 + + − = −


+ + =

&& &&&
&& &&

 

where θ  is the angle of rotation, x is the translational displacement, and τ  is the 

control torque. The positive constants k, l, J, M, and m denote the spring stiffness,  

the radius of rotation, the moment of inertia, the mass of the cart, and the eccentric 

mass, respectively. 

Let define the states and the input variables as 

1 2 1 2sin , cos , , ,ml mlx x z z u
M + m M + m

η θ η θ θ θ θ τ= + = + = = =& &&  

In these coordinates, the system can be described by a set of equations in the form 

of (1) as 

 

 
 



 

Fig. 1  Block diagram of the proposed control method 
 

Fig 2.  A Translational Oscillator with Rotational 

Actuator (TORA) 
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where 
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φ θ= + + −
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The zero dynamics of this system are 
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It is straightforward to check that these zero dynamics are unstable, so the 

system is non-minimum phase [8]. Let the available linearised version of the 

TORA system be written as 

1 2

2 1 1 1
2 1 2 1 1 1

1 2

2 2 1 3 1

ˆˆ ˆˆ ˆ ˆ ˆ(0) (0) ( ) (0)

ˆ ˆ ,

L

z z

z a a z ka M + m u

a a z

φ φ η φ
η η
η η

− − −

=


= − + +


=
 = − +

&

&
&
&

 

where ˆˆ ,m k , Ĵ  and consequently 1 2 3
ˆˆ ˆ ˆ, , ,a a a φ  are the estimates of parameters 

,m k , J  and 1 2 3, , ,a a a φ , respectively. Hence, uncertain parts of the model can be 

represented as 

( ) {

}
( )

1 1 1
1 1 1 1 1 11

1 2
1 2 1 1

2 1 2 1
1 2 1 1 1 1 2 1

2 2 1 3 1 3 1
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2 2

u M + m z u z z
M + m

m l z z z z

z z z z
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Let consider the best available approximation of ψ  as ˆ cuψ υ= = , where c 

should be selected such that Assumption 3 holds; that is 

1
1

11

( ) ( )0.5 0ˆˆ( ) (0) z
M + m zc z
M + m

φ
φ

−

−
≥ > ∀ ∈Ω . 

To ensure that this condition holds for ˆ 2m m< and ˆ 2J J< , it is assumed that 

1c = . 

The linear controller is designed using the pole placement approach by solving 

the Diophantine equation [21]. The state space form of this controller for the linear 

system without parameters uncertainties is 

( )

[ ]

c c d

c

-15.6 1 0 0 15.6
-2068 -198 67932 -4529 121.7

=  
0.28 0 0 1 0.28
10.8 0 -127.8 0 10.4

1.03 0.1 35.4 2.4L

x x y y

u x

   
   
   + −
   −
   −      

= −

&
 

The NN is of MLP type and has 10 neurons in one hidden layer with tangent 

hyperbolic activation functions. The weights are initialised randomly using small 

numbers. The input vector to the NN for 1 4n n= ≥  is 



[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( ), ( )]T
d d d d ad dy t y t T y t T y t T u t u t T u t Tα α= − − − − −ζ , 

with 10 msdT = . The learning coefficients are selected as 2γ γ= =w V , 0.05ϕγ = , 

and 1.2k k= =w V . The vector agc  is designed using the algorithm given in 

Appendix as 

3
ag  = 10 [-0.842,2.322,-0.080,22.160,-1.021,2.311,-100.345,21.430]×c  

For the sake of comparison, the simulations are carried out using the same 

parameters and initial conditions as in reference [14] 

J = 0.0002175 kg/m2, M = 1.3608 kg,  

m = 0.096 kg, l = 0.0592 m, and k = 186.3 N/m. 

1(0) 0.025η = , 2 1 2(0) (0) (0) 0z zη = = = . 

Moreover, the physical constrain on the control effort is considered to be 

0.1 N.mτ ≤  as in [14].  

Simulation results are depicted in Figs. 3–8. First, performance of the closed-

loop system is evaluated without parameters uncertainties, namely m̂ m= , k̂ k= , 

and Ĵ J= . In this case, the proposed controller is used only as a stabilizer with 

0dy = .  

Fig. 3 shows response of the closed-loop system in original coordinates x and 

θ , and the control torque τ . Observe that the convergence rate of the proposed 

approach is almost the same as the backstepping-based controller. 

To verify the robustness of the proposed controller, simulations are repeated in 

presence of parameters uncertainties with ˆ 1.1 ,m m=  ˆ 1.15k k= , and ˆ 1.15J J= . 

Notice that theses uncertainties can be embedded in ∆  and since the proposed 

approach compensates ∆  adaptively (see Fig. 5a) the approach is robust against 

parameters uncertainties. Simulation results, presented in Fig. 4, confirm the 

robustness of the closed-loop system. As this figure shows, the proposed controller 

stabilizes the system very well and the state variables converge to zero while the 

backstepping approach cannot stabilize the state variables, especially for the 

angular movement θ . Moreover, the control signal of the backstepping method has 

very sharp pulses, which may damage the actuator of the system. This is mainly 

because the backstepping approach is model based, while the proposed method 



requires only an approximate linear model of the system. However, it should be 

mentioned that the backstepping approach [14] assures global stability of the 

system while the proposed approach provides semi-global stability in the sense that 

it is local with respect to the NN approximation domain ∆Ω . 

The validity of the bounds on the auxiliary error aρ  and the matched 

uncertainties η∆  can be examined in Figs. 5b and 5c, respectively. Moreover, the 

norms of the adaptive weights are depicted in Fig. 5d.  

Next, the ability of the proposed controller in tracking a non-zero reference 

signal is investigated. Fig. 6 shows the system response in absence of parameters 

uncertainties when Lu  and L ad Ru u u− −  are applied separately. It is clear that the 

system response in both cases is satisfactory except for some oscillations at the 

beginning. 

On the other hand, as Fig. 7 shows, when there are parameter uncertainties, the 

proposed controller has acceptable response, while the linear controller cannot 

control the system and becomes unstable. In addition, effect of the robustifying 

control term Ru on the convergence rate and the ultimate error bound can be 

observed from Fig. 8.   

 

6   Conclusions 

A direct adaptive output-feedback control method for non-minimum phase 

nonlinear systems was proposed in this paper. The proposed method does not relay 

on state estimation with the aid of introducing a SPR augmented error signal using 

the LKY lemma. The approach can be applied to non-affine nonlinear systems, 

which have partially known Lipschitz continuous functions in their arguments with 

sufficiently small zero dynamic modelling error. The ultimate boundedness of the 

tracking error as well as boundedness of the NN weights was shown using the 

Lyapunov direct method. Simulation results, performed on the TORA system, 

showed good performance of the proposed method as compared to the 

backstepping method. 
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Appendix: 
 
In this appendix, an optimization algorithm is proposed to find appropriate values 

for clc  and ac , i.e. the output vectors for the available and the unavailable error 

dynamics, given in (18), respectively. 

Let define the objective function as 
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where Jλ  is a positive constant. The task is to calculate 

1 1 ( 1) 1 ccl n n n nc c c× − + + =  c 0 L  and [ ]20a nc c=c 0L  such that they 

minimize (A1) and at the same time, they comply with Eqs. (20) and (21) over Q. 

The optimization is carried out through the following steps using the gradient 

decent method:  

Step 1: Select ( )1diag 0
cn nq q += >Q L  where 2jq >  for 1, , cj n n= +…  and 

solve (20) and (21) for 1 cag n nc c + =  c L . 

Step 2: Give a variation to j jq q+ ∆  for 1, , cj n n= +…  and derive the 

corresponding ( ) ( )1[ , , , ]
cj ijag j n n jc c c +=c L L  using (20) and (21). 

Step 3:  Derive ij ij i

j j
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q q
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∆ ∆
 for 1, , ci n n= +…  and 1, , cj n n= +… . 
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∆ ∆ ∆∑ …  

Step 6: Update matrix Q using ( 1) ( )j j
j

Jq t q t
q

λ
∆

+ = −
∆

 for 1, , cj n n= +…  and 

calculate matrix P using (20). 

Step 7:  If  1( 1) 2 2j clq t α+ ≤ +PG , then ( 1) ( )j jq t q t+ =  ( 1, , cj n n= +… ) . 

Step 8: If  
1

, , J
m

J J
q q

ε
 ∆ ∆

≤ ∆ ∆ 
…  where Jε  is a desired small value, go to Step 9, 

else ( 1)t t= + and return to Step 2.   

Step 9:  Derive agc using (20) and (21). 

 

 
 
 



 

 
Fig 3.   Stabilization of the TORA without parameters uncertainty; solid line: the proposed method, 
and dotted line: the backstepping controller 
 
 
 

 
Fig 4.  Stabilization of the TORA system with parameters uncertainties; solid line: the proposed 
method, dotted line: the backstepping approach. 
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Fig 5.  Stabilization of the TORA system with parameters uncertainties, (a) matched uncertainty 
cancellation, (b) validation of the auxiliary error bound; 0.15 0.95aρ ρ≤ + ,  
(c) validation of the unmatched uncertainty bound, (d) norm of the adaptive weights 
 

 

 
Fig 6.  Tracking response of the TORA system without parameters uncertainties 
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Fig 7.  Tracking response of the TORA system with parameters uncertainties 
 

 

0 10 20 30 40 50 60
-16

-14

-12

-10

-8

-6

-4

-2

0

2

time, s

lo
g(

(y
d- θ

)2 +x
2 )

 

 
w ith uL-uad

w ith uL-uad-uR

 
Fig. 8   Tracking response of the TORA system with parameters uncertainties, error convergence with 
and without Ru  
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