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    ABSTRACT  

This paper presents an adaptive output feedback stabilisation method based on 

neural networks for nonlinear non-minimum phase systems. The proposed 

controller comprises a linear, a neuro-adaptive, and an adaptive robustifying parts. 

The neural network is designed to approximate the matched uncertainties of the 

system. The inputs of the neural network are the tapped delays of the system input-

output signals. In addition, an appropriate reference signal is proposed to 

compensate the unmatched uncertainties inherent in the internal system dynamics. 

The adaptation laws for the neural network weights and adaptive gains are 

obtained using the Lyapunov’s direct method. These adaptation laws employ a 

linear observer of system dynamics that is realisable. The ultimate boundedness of 

the error signals are analytically shown using Lyapunov's method. The 

effectiveness of the proposed scheme is shown by applying to a translation 

oscillator rotational actuator (TORA) model.  
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1 Introduction 
Output feedback control for nonlinear systems is a challenging problem in control theory that 

has been studied in recent years.  Various methods have been proposed in this area including 

using geometric techniques [1], adaptive observers and output feedback controllers for system 

in output feedback form [2], high gain observers [3], backstepping method for nonlinear 

systems with parametric uncertainties [4], and combining the backstepping with the small 

gain theorem [5]. The main objective of these efforts is to propose systematic design methods 

for controlling nonlinear systems in the presence of structured uncertainties in the form of 

parameters variations and unstructured uncertainties such as unmodeled dynamics.  

 

Many works have been presented based on the output feedback control method using neural 

networks (NNs) techniques. These methods can be applied to a wide class of nonlinear 

systems with structured and unstructured uncertainties. Some methods have been focused on 

control of uncertain systems using high-gain observers [6, 7], adaptive error observers [8], 

and constructing a strictly positive real (SPR) error dynamics and using Kalman-Yakobuvich 

lemma [9, 10].  These methods are based on the minimum phase assumption. The minimum 

phase assumption guarantees global asymptotic stability of the zero dynamics. In fact, for 

controlling a non-minimum phase system, information on the state variable associated with 

the zero dynamics is normally required.  State observation of nonlinear systems is often not 

straightforward task, particularly for a complex nonlinear system.  However, many methods 

of nonlinear systems yield a linear observer error dynamics [11]. A particular case for the 

systems in output feedback form can be found in [2]. 

 

Recently, many papers have dealt with output feedback stabilisation of non-minimum phase 

systems. Isidori [12] has presented a solution for robust semi-global output feedback 

stabilisation of non-minimum phase systems based on auxiliary constructions using a high-

gain observer. Karagiannis et al. [13] have proposed a method for global output feedback 

stabilisation by designing an observer and using the classical backstepping and the small-gain 

techniques. A design method for semi-global stabilisation of a class of non-minimum phase 

nonlinear systems, which can be transformed to the global normal form and to the form of 

linear observer error dynamics, has been presented by Ding [11].  These methods have 

considered the stabilisation problem for nonlinear systems in which their nonlinearities and 

the high frequency gain depend only on the output of the system. Various results on local and 



      

non-local stabilisation of non-minimum phase nonlinear systems have been presented that 

deal with more general nonlinear systems using the universal approximation property of 

neural networks and fuzzy systems [14, 15].  However, in these works, it has been assumed 

that the system states are available. Hovakimyan et al. [16] have considered the output 

feedback control of a more general class of non-minimum phase nonlinear system based on 

universal approximation properties of NN and using a high order error observer. 

 

This paper presents an adaptive output feedback stabilisation method for observable and 

stabilisable nonlinear non-minimum phase systems, where the matched uncertainties are 

cancelled out using NNs. In contrary to analytical approaches presented in [11-13], in the 

proposed method, the internal dynamic and the high frequency gain of system is not restricted 

to be dependent only on the system output. Moreover, it is an observer-based method; hence, 

only the system output is required for designing the controller. In addition, the stability result 

is semi-global in the sense that it is local with respect to the compensation domain of the 

matched and unmatched uncertainties. 

 

For designing the controller, a linear approximation model of the nonlinear system is first 

derived to represent the non-minimum phase zeros of the nonlinear system with desired 

accuracy. In fact, there is a conic sector bound on the modelling error of the non-minimum 

phase zeros which is referred to as the unmatched uncertainty. Hence, the proposed approach 

can be applied to uncertain systems, which have partially known Lipschitz continuous 

functions in their arguments. Then, a static linear controller is proposed to stabilise the linear 

part of the system in the absence of nonlinearities. Finally, a controller, which is obtained 

from this linear controller and a neuro-adaptive element, is used to approximate the matched 

uncertainty. The NN operates over a tapped-delay line of memory units, comprised of the 

system input/output signals [16]. In addition, in comparison with [16], an extra part, which is 

termed as a robustifying control part, is included in the control law to compensate the NN 

approximation error. Moreover, to achieve a semi-global stabilisation, the unmatched 

uncertainties, inherent in the internal dynamics of the system, is cancelled out using a suitable 

reference signal. For realisation of the proposed control method, a linear observer is proposed 

to estimate the error dynamics of the system. Hence, it is assumed that only the system output 

is measurable.  

 



      

This paper is organised as follows: Section 2 describes the class of nonlinear systems which is 

considered in this paper. In this section the problem of stabilisation associated with these 

systems is also clarified. The procedure of the control and observer design, and approximation 

properties of the NN are addressed in Section 3. Section 4 provides analytical results on 

stability of the closed-loop system. Simulation results are presented in Section 5. Conclusions 

are given in Section 6.  

 

 In this paper,  min ( )λ P  and max ( )λ P  stand for the minimum and maximum eigenvalues of the 

symmetric matrix P , respectively.  

 

2 Problem statement 
Consider the nonlinear system [1] 
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which is in the normal form with the coordinates [ ]1 1, ..., , , ...,T T
r r n, z z η η+  = z η  where r 

(1 )r n≤ <  is the relative degree, η
−∈Ω ⊂η n rR  is the state vector associated with the internal 

dynamics, r
z R∈Ω ⊂z  where ηΩ and Ωz  are the compact sets of operating regions, and u  

and y  are the input and the output of the system, respectively. The mappings 1: nf R R+ →  

and : nv R R→  are partially known and continuous Lipschitz functions with initial conditions 

( ), ,0 0f =0 0  and ( ),v =0 0 0 . Note that the system (1) can be non-minimum phase. Hence, the 

stability assumption on the zero dynamics of the system is not required. 

 

Assumption 1. Assume that ( ), , 0uf f u u u R= ∂ ∂ ≠ ∀ ∈z η . This condition implies that the 

smooth function uf  is strictly either positive or negative on the compact set  

( ){ }, , , , .zU u u Rη= ∈Ω ∈ Ω ∈z η z η  

It is also assumed that only the system output ( )y t  is measurable.  

 

The objective is to design an appropriate adaptive control for stabilising of the entire system 

(1) including the internal dynamics. 



      

3 Controller design 
3.1 Construction of error dynamics  

Using the Taylor expansion, the system in (1) can be represented as  

( )

( )

1

1

1

1 1

, ,
1 1

,
,

i i
T T

r

j j

T T
n r

z z i r
z b u b u

j n r

y z

η η

η

+

+

−

 = ≤ ≤ −


= + + + ∆
 = ≤ ≤ − −


= + + ∆
 =

η

m z n η z η

f η g z z η

&
&
& &

&

                                           (2) 

where m, n, f and g are coefficient vectors with appropriate dimensions, and ( , , )u∆ z η  and 

( , )∆η z η  are unknown functions, which are referred to as the matched and unmatched 

uncertainties, respectively [17]. 

 

Define the error signal 1 de e y y= −@  where dy  is the reference signal and consider the 

combined control law as  

( )1
= − − + −

m y
T

r
L ad R d du u u u y

b b
                                             (3) 

where ( 1) Tr
d d dy y − =  y L  and Lu , adu  and Ru  are the linear, the adaptive and the 

robustifying control parts, respectively.  Then, the error dynamics can be described as  
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where * ( 1)
1 2

r
d d r dy g y g y g y −= + + +& L , [ ]1

T
rg g=g L , [ ]1

T
re e=e L and ( 1) (2 )i

i d ie y z r r−= − ≤ ≤ . 

 

Assumption 2.  The signal dy  and its derivatives, and the unmatched uncertainty ( , )∆η z η are 

bounded with constant and a conic sector bounds, respectively.  That is  
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where *
0c , *

2c  and *
3c  are unknown constants and 1c  is a known positive constant such that 

1 1c < .   

 



      

Remark 1: In many stabilisation approaches of non-minimum phase systems, it is assumed 

that the internal dynamics only depend on the system output y [11]-[13]. In this paper, a more 

general case is proposed. In this method, the internal dynamics of the system are not restricted 

only to the system output. In a particular case, when 0 ( 2, , )= = …ig i r  and ∆η  is a function of 

1z  instead of z ,  the internal dynamics depend only on the system output. 

 

Let [ , ]T T Tξ e η@ . The error dynamics of the nonlinear system (4), can be represented as 
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Since the system is non-minimum phase, A  has at least one eigenvalue with the positive real 

part. Therefore, the linear control Lu is first designed to stabilise the associated linearised 

system.  

 

3.2 Linear control design 

Controllability of ( ),A b  ensures the existence of the unique symmetric positive-definite 

solution  1P  of the algebraic Riccati equation  

  1 1 1 1 12 0T T+ + − =P A A P Q P bb P                                     (7) 

where 1Q  is an arbitrary symmetric positive-definite matrix and 0r >  is a given number.   The 

(optimal) linear control is 

1
ˆ

L cu ρ= − = −k ξ                                                           (8) 

where ξ̂  denotes estimation of ξ and the vector gain ck  is  

1
T
c =k P b                                                                (9) 

Substituting (9) into (7) gives 

( ) ( )1 1 1 0T
c c− + − + =A bk P P A bk Q                                       (10) 

Hence, −A bk c  is a stable matrix and Lu  stabilises the system (6) if ad Ru u+  and *y  cancel 

out the matched and unmatched uncertainties, respectively. 



      

3.3 Neural network-based adaptive controller design 

The function ( , , )u∆ z η  is unknown and it must be approximated for designing an appropriate 

stabilising control.  In fact,  ( , , )u∆ z η  is approximated by employing an appropriate 

multilayer perceptron (MLP) to construct a suitable adaptive part adu  of the control law in (3) 

for eliminating the influence of the unknown signal ( , , )u∆ z η  on the system. Hence, there 

exists a fixed-point problem as 

( ) ( , , )ad adu t u uα= ∆ − +z η                                               (11) 

where  ( )1 T
r

L R d du u u y
b bα = − + −

m y . 

 

According to the contractive mapping theorem [18], if the map adu → ∆  is contractive over 

the entire input domain then the fixed point problem (20) has a unique solution for adu . On 

the other hand, this map is contractive if it ensures the following condition   

1
adu

∂∆
<

∂
                                                             (12) 

 

Substituting (1), (2) and (3) into (12), yields         

( )( ), ,1 11 1
T T

ad ad

f u bu u f
u b u u b u

∂ − − −∂∆ ∂ ∂
= = − <

∂ ∂ ∂ ∂

z η m z n η
                      (13) 

The condition (13) is equivalent to the following two simultaneous conditions 

    sgn( ) sgn( ), 0.5b f u b f u= ∂ ∂ > ∂ ∂                                         (14) 

Under the observability condition of the system (1), it can be shown that the continuous-time 

dynamic ( , , )u∆ z η  can be approximated using the delayed inputs and outputs as [10, 19]  

( ) 0( , , )u ε∆ = Γ +z η ζ                                             (15) 

where [ ]1= ∈ζ y u T NR and : NR RΓ → is a smooth continuous function and 
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and Γ  is an update function which is obtained using the NN techniques. The approximation 

error 0ε  is directly proportional to the sampling time interval dT . Hence, 0ε  can be ignored by 



      

selecting a sufficiently small 0dT > .  Note that the sampling time dT  is always a positive real 

number even if it is selected sufficiently small. 

 

On the other hand, standard MLPs (particularly with functional inputs) are universal 

approximators and they can approximate any sufficiently smooth function on an appropriate 

compact set with any desired degree of accuracy and an arbitrarily bounded error [20]-[22]. 

Moreover, the domain of the function ( , , )u∆ z η  is the compact set R  with the Euclidean norm 

and also any closed and bounded subset of R  is also a compact set.  Therefore, based on these 

facts, a set of ideal weights *w and *V  on the compact set Ωζ  exists such that 

( ) * *
1, , ( )T Tu ε∆ = + ∀ ∈Ωζz η w σ V ζ ζ                                        (16) 

where * N mR ×∈V  and * mR∈w  are synaptic weights connecting the input layer to the hidden 

layer and the hidden layer to the output layer, respectively [ ]1
T

mσ σ=σ L  is a vector function 

containing nonlinear functions of neurons in the hidden layer, and 1 1Mε ε≤  in which 1Mε  

depends on the network architecture. The ideal constant weights *w  and *V  are defined as 

( )
( )

( )* *, arg min sup ( )T T

, ∈Ω ∈Ω

  − Γ 
  w ζ

w V ζ
w V w σ V ζ ζ@                                  (17) 

where ( ){ }F
,, M MΩ = ≤ ≤w w Vw V w V , in which Mw  and MV  are positive numbers, and 

F
⋅  denotes the Frobenius norm. Since ∆  can be modelled using a NN, an MLP is employed 

to construct the adaptive control part as 

( )T T
adu = w σ V ζ                                                        (18) 

However, in practice, the weights of this NN may be different from the ideal ones, defined in 

(17). Therefore, an approximation error is required to remove this obstacle. 

 

Lemma 1: Let the activation functions ( 1, , )i i mσ = …  be logistic or hyperbolic tangent 

functions. Then, the approximation error, which arises from the difference between (16) and 

(18), satisfies the following equality 

( ) ( )( , , ) tr ( )T T T T
adu u tδ∆ − = − + +z η w σ σV ζ V ζw σ%% & &                            (19) 

where ,* *= =− −w w w V V V%% , 1 F
( ) 2Mt mM M Mδ ε α α≤ + + +w w VV ζ w ζ% %  and 
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 is the derivative of vector σ  with respect to the input signals , 1, ,i i mν = … , where 

1[ , , ]T T
mν ν = V ζ…  and m denotes the number of neurons in the hidden layer. 

Proof.  Using the Taylor series expansion of *( )Tσ V ζ , it yields 
*( ) ( ) ( ) ( ) ( )= + = + + ⋅σ V ζ σ V ζ V ζ σ V ζ σ V ζ V ζ O% %&T T T T T T                             (21)     

where ( )⋅ ∈O mR  denotes the vector associated with high order terms.  Note that the nonlinear 

activation function of neurons in the hidden layer of MLP ( )i iσ ν  is a sigmoid type (e.g. the 

logistic function ( ) 1/(1 )  i
i i e ανσ ν −= + or the hyperbolic tangent function 

( ) tanh( )i i iσ ν αν= with  >0α ). Hence, 1iσ ≤  and ( ) /i i iσ ν ν α∂ ≤ . Consequently, for both 

cases, m≤σ and α≤σ& . Using these inequalities and (21), it can be shown that ( )⋅O  is 

also bounded  
*

F
( ) ( ) ( ) ( ) 2T T T T m α⋅ = − − ≤ +O σ V ζ σ V ζ σ V ζ V ζ V ζ% %&                       (22) 

From (21) the approximation error is evaluated 
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where 

( )* *
1( ) T T Ttδ ε+ ⋅ +w σV ζ w O% &@  

Now, using (17), (22),  α≤σ&  and the fact that F F≤AB A B , a bound for ( )tδ  is 

obtained  
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The adaptation rules for the weights of the neuro-adaptive control part adu , defined in (18), is 

proposed as 
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where 1ρ  is the same as in (8), γ w  and γ V  are learning coefficients, and wk  and Vk  are σ -

modification gains. 

 

Note that in the case of noise-corrupted measurements, it is beneficial to use a data history as 

large as possible in input vector of NN, ζ , because the variance of the estimated parameters of 

NN (i.e. weights V, w) increases proportionally to the noise variance and to the inverse of size 

of covariance matrix of input data.  
 

Lemma 1 and its proof differ from that which presented by Lewis et al. [23, 24].  In this 

paper, it is assumed that the modelling error term ( )tδ  is bounded with respect to the inputs of 

the NN, rather than with respect to the filtered tracking error.  
 

Remark 2:  As it is shown in Section 4, the stability analysis relies on an extension of the 

Lyapunov theory. The derivate of this Lyapunov function is negative outside a compact set. In 

this case, to avoid any persistent excitation condition on the NN inputs and to guarantee the 

boundedness of w%  and V% , the σ -modification terms are considered in the adaptation rules 

[23, 25].  

 

Using (16), (17), (18), and m≤σ , the following conservative upper bound of the 

approximation error is obtained 
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3.4 Adaptive robustifying control design  

The neuro-adaptive control part adu , with adaptation rules (23), may not completely eliminate 

the matched uncertainty since the approximation error ( )tδ  influences the system, In order to 

compensate this error, an adaptive robustifying control part Ru  is proposed. Using (20), the 

upper bound of this approximation error can be calculated as 
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where { }*
1max 2 , , ,2M mM M M M Mϕ ε α α α= + w w V V w  and ( )F1 1χ + + +ζ V w@ . Hence, 

( )tδ  is limited to the multiplication of the known function χ  and an unknown parameter *ϕ . 

Therefore, the following adaptive robustifying control part is introduced 

( )1tanhR
R

u ρχ ϕ µ=                                                            (26) 

with the following adaptation rule 

1ϕϕ γ χ ρ=&                                                                     (27) 

where Rµ  is a small positive constant, ϕγ  is the constant learning rate and ϕ  is an estimate of 

the unknown parameter *ϕ . The adaptation rule for ϕ  is derived in Section 4 using the 

Lyapunov direct method. Note that, in order to eliminate the chattering phenomenon, the 

continuous function tanh( )⋅  is used here instead of the conventional discontinuous function 

sign( )⋅ ; nevertheless, this increases the ultimate error bound. Because of the universal 

approximation property of NNs, the approximation error is bounded. Hence, it is always 

possible to find a positive constant MU such that     

≤R Mu U                                                                   (28)    

 

3.5 Observer design 

For realisation of weight adaptation laws, given in (23) and (27), (i.e. dependent only on the 

measurable system output), the linear state estimator 

( )ˆ ˆ ˆ
L ou e= + + −ξ Aξ b k cξ&                                                 (29) 

is proposed where b and c are the same as in (6) and the observer gain 1[ ]T
no k k=k L  is 

selected such that o−A k c  is stable. Moreover, the stability of o−A k c  assures the existence of 

the symmetric positive-definite solution 2P  of the algebraic Riccati equation  

( ) ( ) 1
2 2 2 1 1 1

T T T
o o o o

−− + − = − −P A k c A k c P Q c k P Q P k c                           (30)  

where 2Q  is an arbitrary symmetric positive-definite matrix. 



      

The observer (29) is included to the nonlinear system (6), as depicted in Fig. 1. Define the 

state estimation error as ˆ −ξ ξ ξ% @  and 
TT T  E ξ ξ%@                                                                        (31) 

            
 

Fig. 1. Block diagram of the augmented plant 
 

Then, the augmented system dynamics can be described as 
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where ad Ru uβ ∆ − −@  and *yγ + ∆η@ .   

 

Therefore, the augmented system dynamic can be expressed as 

( )0 0 0 1 1
ˆ

L cu β γ β γ= + + + + − −E A E b k ξ q b q&                        (32) 

where  
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0 0
,  ,  ,  ,  ,  ,  

0 0 0
c c

ad R
o

u u yβ γ
− −         

= = = = = = ∆ − − = + ∆         −         
η

A bk bk b q
A b q b q

A k c b q
 

So the available output signals are introduced as 

[ ]1

2 1 1 1

ˆ
.ˆ

c c c

T T T

ρ

ρ

= = 


 = =   

k ξ k k E

q Pξ q P q P E
                                             (33) 

Remark 3: Let 2

TT T = − b b b  and 2

TT T = − q q q .  If only the linear part of the control 

law, defined as in (8), is applied to the system, then, since Lu  and dy  are functions of E, the 

closed-loop form of the system (32) can be considered as                                

                                       
{

( )
{

( )0

22

γ
   

= + ∆ +   − −   
qb

b q
E A E E E

b q
& ,                                                   (34) 
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where ( )∆ E  and ( )γ E  are continuous Lipschitz functions and act as vanishing perturbations 

because of ( ) 0∆ =0  and ( ) 0γ =0 . This can be concluded from the conditions ( ), ,0 0f =0 0  and 

( ),v =0 0 0  as defined in (1) [17].  In the following Lemma, it is shown that by designing 

suitable feedback gains ck  and ok ,  the boundedness of states is achieved in the presence of 

these perturbations. 

 

Lemma 2: Consider the system (32) and  ( )0 0
T= − +Q PA A P  where 

1 1

1 1 2

 
=  + 

P P
P

P P P
 

If only the linear controller (8) is applied and the condition  

( )min 11 2 22 2 max( ) 2 ( ) 2λ γ γ λ> + +Q b q P  

 is satisfied then the system states are bounded in the presence of the perturbation signals 

( )∆ E  and ( )γ E . 
 

Proof.  Define the following conic bounds for perturbations [17] 

( )
( )

12 11

21 22 ,

γ γ

γ γ γ

 ∆ ≤ +


≤ +

E E

E E
                                                  (35) 

where 11 12 21, ,γ γ γ  and 22γ  are appropriate nonnegative real constants. Now consider the 

quadratic Lyapunov function as 

1
1
2

TL = E PE . 

Using (34) and bounds defined in (35), the time-derivate of 1L  becomes 

( )12 21 max

1 2 2

2
min 2 2

2 2 22 2 2
min 11 2 max 22 2 max 2 2

1
2
1    ( )
2
1 1( ) ( ) ( ) 1 ( ),
2 2

T T T

T T

L γ

λ γ

λ γ λ γ λ γ γ λ

= − + ∆ +

≤ − + ∆ +

 ≤ − − − − + + 
 

E QE E Pb E Pq

Q E E Pb E Pq

Q b P q P E b q P

&

         

(36)  

since  ( )0 0
T= − +Q PA A P , 

 



      

( )12 max

2 2 max

2
11 2 max 12 2 max

2 2 22 2
11 2 max 2

( )

               ( ) ( )
1               ( ) ( )
2

T λ

γ λ γ λ

γ λ γ λ

∆ ≤ ∆

≤ +

≤ + +

E Pb E b P

E b P E b P

E b P E b P

 

and 

( )21 max

2 2 max

2
22 2 max 21 2 max

2 2 22 2
22 2 max 2

( )

               ( ) ( )
1               ( ) ( ) .
2

T γ γ λ

γ λ γ λ

γ λ γ λ

≤

≤ +

≤ + +

E Pq E q P

E q P E q P

E q P E q P

 

Therefore, if the following condition is satisfied 

( )min 11 2 22 2 max( ) 2 ( ) 2λ γ γ λ> + +Q b q P ,                                         (37) 

then the boundedness of states is assured while only the linear control is applied.                   □ 
 

Alternatively, a new sufficient condition for boundedness of the system states, similar to the 

condition (37) may be obtained.  To achieve this, it is assumed that a matrix S  is similar to 

the nonsigular matrix 0A  such that 1
0

−=Λ S A S  is a diagonal matrix. In particular, the entries 

of Λ  may be selected the same as the eigenvalues of 0A . Define new state variables as 
1−E S E@ .  By replacing E  with E  in (34) and (35) and considering a similar procedure for 

deriving 1L&   as stated in (36), the following condition is obtained 

( ) ( )min 11 2 22 2 max2 ( ) 2λ γ γ λ> + +Q b q S P                                       (38) 

where ,T=Q S QS  ,T=P S PS  1
2 2

−=b S b  and 1
2 2

−=q S q . From (6) and (32), 

2 22 , 2b= =b q . Moreover, T=P P . Hence, 

( ) ( )

( )

1
11 2 22 2 11 22 max

1
11 22 max

2 ( )

2 ( )

b

b

γ γ γ γ λ

γ γ λ

−

−

+ ≤ +

= +

b q S P S S P

S S P
                   (39) 

On the other hand, since 0A   is a stable matrix, the real parts of all its eigenvalues are within 

the left half-plane.  So ( ) / 2 0T+ <Λ Λ ,  particularly max ( ) 0Tλ + <Λ Λ .  In addition,   

max
max

max

( )( )
( )T

λ
λ

λ
≤

+
QP

Λ Λ
.                                                    (40) 

[26]. Using (39) and (40) it is concluded that (38) holds if the following condition on the 

maximum and minimum eigenvalues of the weighting matrix Q is satisfied 

( ) 1
11 22 max

min
max

2 ( )
( ) 2 1

( )T

bγ γ λ
λ

λ

− +
 > +
 + 

S S Q
Q

Λ Λ
                                 (41) 



      

In order to satisfy this condition, eigenvalues of 0A  or equivalentlyΛ , which are associated 

with the linear part of the controller, should be appropriately selected. This can be achieved 

by designing suitable feedback gains ck and ok . 
 

Therefore, the closed-loop system remains stable until the NN (i.e. the adaptive part adu ) and 

dy  begin to learn.  The weights are tuned online as the system tracks the desired trajectory. 

As the NN and dy  learn the matched and the unmatched uncertainties, respectively, the 

tracking performance improves and the ultimate error bound decreases. It is important to note 

that at the commencing of the learning process to achieve the system stability, the existence of 

the compact set Ωζ , as defined in (16), is guaranteed. 

 
3.6 Reference signal construction  

The reference signal dy  (see Fig. 1) is designed to cancel out the unmatched uncertainty ∆η . 

Using the error de y y−@ , the upper bound of the modelling error, defined in (5), can be 

represented as 

 ( )* ( ) *
0 1 2( , ) r

d dc c y c≤ + + + +ηΔ z η e y η                                      (42) 

On the other hand, from (3) and (4) the following bounds can be derived 

( )
1 2( ) ( ) ( ) ( )

0 0

r r
r i r i

d d d d d
i i

y y y y
−

= =

+ = + ≤∑ ∑y                                       (43) 

   
1 1

* ( ) ( )
1 1

0 0

r r
i i

i d i d
i i

y g y g y
− −

+ +
= =

= ≤∑ ∑                                              (44) 

Then  
1

( ) * ( ) ( ) * *
1 3

0 0

r r
r i i

d d i d d
i i

y y g y y y c p
−

+
= =

+ ≤ − + ≤ +∑ ∑y                             (45) 

where 1p ≤  is a nonnegative real number and *
3c  is defined in (5). Substituting (45) into (42) 

yields 
* * *
4 1 5( , ) c c y c≤ + +ηΔ z η ξ                                              (46) 

where * *
5 1 2c c c= +  and  * * *

4 0 1 3c c c c p= + .  Define * * *
4 5

T
c c  λ @ .   Then  

* *
1( , ) 1

TTc y  ≤ +  ηΔ z η λ ξ                                   (47)             

Let λ be an estimate of the unknown parameter *λ .  An adaptive reference signal is proposed 

as 



      

* 2

1

ˆ11 1 tanh
( ) ( ) 1

T
T

d
y

y y
D s D s c

ρ
µ

      = = −    −   
 

λ ξ
                                 (48)            

with the following adaptation rule 

[ ]4 5 2
ˆ1

TTc c λ ρ = = Γ  λ ξ& & &                                               (49)           

where yµ  is a positive constant, λΓ  is the learning coefficient matrix and 

1 2
1 1( ) r r

r rD s g s g s g− −
−= + + +L  

is stable polynomial in which ( 1, , )ig i r= …  were defined in Section 3.  

 

Remark 4: In practice, small positive numbers are selected as the initial values of  [ ]4 5c c . 

Then, according to (49) these gains increase and approach to * *
4 5c c   .  Hence, always *

4 4c c≤  

and *
5 5c c≤ . Using the approximation error *yγ = + ∆η , and equations (46) and (48), the 

following bound can be derived 

( ) ( )* * *
4 5 51 1c d c d c dγ ≤ + + + +ξ ξ%                            (50) 

where 1

1

1
1

cd
c

+
=

−
. Substituting (31) into (50) yields  

0 1γ α α≤ + E                                                         (51) 

where ( )*
0 4 1c dα = +  and ( )*

1 5 1 2c dα = + . 

 

4 Stability analysis  
This section presents stability analysis of the proposed control law in the closed-loop system. 

Using an extension of the Lyapunov theory, it is shown in the following theorem that the error 

trajectories , andE w V%%  are ultimately bounded.      

 

Theorem 1: Consider the linear controller (8), the neuro-adaptive control part adu in (18)   

with the adaptation rules (23), the robustifying control part Ru in (26), and the reference 

signal dy  in (48). Then, the error signals E , w% , and V%  in the closed-loop system are 

uniformly ultimately bounded. 

Proof: Define the Lyapunov function  

222 1
1 2

1 1 1 1 1 1ˆ ˆ
2 2 2 2 2 2

T T T
F

V

L λ
ϕ

ϕ
γ γ γ

−= + + + + + Γ
w

ξ Pξ ξ P ξ λ λw V% % % %% %%  



      

where *ϕ ϕ ϕ−% @  and * −λ λ λ% @ , in which *ϕ  and *λ  are the ideal gains of their corresponding 

estimated values ϕ  and λ , respectively. Using (31), this Lyapunov function can be 

represented as 

222 11 1 1 1 1
2 2 2 2 2

T T
F

V

L λ
ϕ

ϕ
γ γ γ

−= + + + + Γ
w

E PE λ λw V % %% %%                         (52) 

where 1 1

1 1 2

 
=  + 

P P
P

P P P
. Recall that *w  and *V  are the ideal constant weights for the NN, 

defined in (17). Then, from (20) = −w w&& %  and = −V V&& % . Using (32), the time-derivative of (52) 

becomes 

( )

( )

1 1 1 1

1 1 2 1 1 2

1 1 1 1
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0 02
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1 1 1tr
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Using (9) and (33), yields 

         1 1 1
0 0 1

1 1 2 1

T
T T T T c

T
c
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   1 1 1
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   
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E Pq E q E
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Using (8), (10), (30), (53), and (54), L&  becomes 

( ) 1
1 2 1 1

1 1 1 1tr
2

T T T T T
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ϕ
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γ γ γ
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Q
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Since 1Q  and 2Q  are symmetric positive-definite matrices, Q  is also a symmetric positive-

definite matrix. Substituting  ( ) ( )trT T T T
Ruβ δ= − + + −w σ σV ζ V ζw σ%% & &  from (19) and (32) into 

the last equation yields 

( ) ( )( ) ( )

( ) ( )

1

* 1
1 2 1 1

1 1 1tr tr
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T T T T T T
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Now from the bounds (25), (47), (51), the robustifying control part (26) and the reference 

signal (48), and considering the fact that tanh( / )x xx x x kµ µ− ≤ − +  with 0.2785k = , and using 

(55), the time derivative of L  satisfies the following inequality 

( )
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where min ( )λ Q  denotes the smallest eigenvalue of Q and 12M w M MmM Uβ ε+ +@  is the 

upper bound of β  which can be derived using (24), (28) and (32). Let 
11
yk

c
µ

ε
−

@  .  Using the 

inequalities 2 1
ˆρ ≤ Pq ξ , ˆ 2≤ξ E , ≤ξ E%  and applying the adaptation rules (23) yields 

( )

22 2
min 1

21 * * *
2 4 5 5 1

1 1 0 1

1 1( )
2

ˆ1 2 2

.

w w w V V V R MF F

T
T

M

L k k M k k M k U

c c c

ϕ

λ

λ ϕ ρ χ ϕ µ
γ

ρ ε ε

β α α

−

 
≤ − − + − + + − +  

 
  + − Γ + + +   

+ + +

Q E w w V V

λ ξ λ E Pq E

E Pb E Pq E

& % % % &% %

% &  

Using the adaptation rules (27) and (49), and completing the square terms gives 

( ) ( )
22 21 1E w VL A k k R≤ − − − − − +E w V& %%                              (56) 

where 
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            (57)  

Select wk , Vk , 1α  and *
5c   such that the following conditions are satisfied 

( )*
min 1 5 1( ) 2 2 2cλ α> + +Q Pq                                                 (58) 

1wk > , 1Vk >  

Define the following compact set around the origin 

( ) ( ) ( ){ }22 2, , 1 1E w vA k k RΩ + − + − ≤E w V E w V% %% %@  



      

Inequality (56) shows that when the errors are outside the compact set Ω , then 0L <& . Hence, 

according to the extension of the standard Lyapunov theorem [23, 27], the error trajectories 

, andE w V%% are ultimately bounded.                                                                                          □ 
 

Note that condition (37) is obtained in the absence of the adaptive NN while the condition 

(58) is derived in the presence of the NN controller and the presence of the matched 

uncertainty does not affect to hold this condition. Therefore, the adaptive controller not only 

improves the system stability but also relaxes the stability condition. 

 

Corollary: The output y and the internal dynamics of the system (1) are bounded.  

Proof:  (56) implies that  L&  is strictly negative as long as E  is outside the following compact 

set  

E
E

R
A

  Ω ≤ 
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E E@                                                     (59) 

Therefore, there exists a constant time T such that for t T> , the error E  converges to EΩ . 

This means that E
E

R
A ε≤ =ξ , Eε≤ξ%  and  consequently ˆ 2 Eε≤ξ  and Ee ε≤ . Hence, 

(48) yields that d yy ε≤  as t → ∞ , where 
( )

* *
4 5 1

1

2 2tanh
1

E E
y

y

c c
c

ε εε µ
 +

=  −  

P q .  Therefore, the 

system output is stable and converges to a small bound, which is less than y Eε ε+  around the 

origin as t → ∞ . Moreover, the internal dynamics are bounded with a bound less than Eε .      

□                                                                  
 

Remark 5: The equation (57) shows that the unmatched uncertainties, the NN reconstruction 

error embodied in the constants *
4c , *

5c  and Mβ  increase the error bound. Note that, since 

ad Ru u+  is designed to cancel out ∆ , then the upper bound Mβ , which is derived from (24) and 

(28), is selected very cautiously; however, in practice the real bound would be much smaller. 

 

Fig. 2 shows the block diagram of the system with the proposed controller and observer in 

which TDL stands for tapped delay line such that the previous and current values are 

available to feed into the input of neural networks. 

 

 



      

 

 

 

 

 

 

 

 

Fig. 2. Block diagram of the proposed controller 
 

5 Example: Translational oscillator with a rotational actuator (TORA) 
A TORA model is considered to illustrate the performance of the proposed controller [13, 15].  

See Fig. 3. The dynamics of the system is governed by the following equations 
2

2

( ) ( cos sin )
( ) cos
M m x ml k x
J ml ml x

θ θ θ θ

θ θ τ

+ + − = −

+ + =

&& &&&
&& &&

 

where θ  is the angle of rotation, x is the translational displacement, and τ  is the control 

torque. The positive constants k, l, J, M, and m denote the spring stiffness, the radius of 

rotation, the moment of inertia, the mass of the cart, and the eccentric mass, respectively. 

 

         

 Fig. 3. A translational oscillator with a rotational actuator (TORA) 
 

Define the states and the input variables as 

1 2 1 2sin , cos , , ,ml mlx x z z u
M + m M + m

η θ η θ θ θ θ τ= + = + = = =& &&  

In these coordinates, the system can be described by a set of equations in the form of (2) as 
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where 2 2 2 2
1 1 2 3 2( ) ( )( ) cos , , and .

( )
k k mlz M m J ml m l a ml a a

M m M m
φ θ= + + − = = =

+ +  
The 

output of the system is 1y z= . Therefore, the zero dynamics of this system is 

1 2

2 2 1.a
η η
η η

=
 = −

&
&

 

Since 2 0a > ,  the zero dynamics is unstable and the system is non-minimum phase. The 

linearised model of the TORA system is 

1 2

2 1 1 1
2 1 2 1 1 1

1 2

2 2 1 3 1

ˆˆ ˆ ˆˆ ˆ ˆ ˆ(0) (0) ( ) (0)
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where ˆˆ ,m k , ˆ,J  1 2 3ˆ ˆ ˆ, ,  a a a and φ̂  are the estimates of the parameters ,m k , J , 1 2 3, ,a a a  and φ  

respectively. Hence, the matched and unmatched uncertainties can be represented as 

( )

{
}
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1 1 1 1
1 1 1 1 1 1

1 2 2 1 2 1
1 2 1 1 1 2 1 1 1 1 2 1
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( )1 2 2 1 3 1 3 1ˆ ˆ, ( ) sinz a a a z a zη η∆ = − − + −η . 

Note that, Assumption 1 is satisfied; that is 

1
1

( , , ) ( ) ( ) 0f z u M + m z
u
η

φ −∂
= >

∂
 

In addition, assume that the estimates of the model parameters  

are obtained such that the contractive mapping condition (14) is satisfied. That is, 
1 1

1
ˆˆ( ) (0) 0.5( ) ( )M + m M + m zφ φ− −≥  

The sufficient conditions that ensure this assumption are ˆ 2m m< and ˆ 2J J< , which are very 

mild conditions. 
 

The NN is a MLP type and comprises of 10 neurons in one hidden layer with tangent 

hyperbolic as the activation functions. The weights are initialised randomly using small 

numbers. The input vector to the NN is 



      

[1, ( ), ( ), ( 2 ), ( 3 ), ( ), ( 2 )]T
dd d d dy t y t T y t T y t T u t T u t T= − − − − −ξ , 

with 10 m/secdT = . The learning coefficients are selected as  

3γ γ= =w V , 2ϕγ = , 
0.05 0

0 1λΓ =
 
  

 

and 1.2w Vk k= = . Moreover, the controller and observer gains are  

[ ]4.64, 1, 298.6, 6.96c = − − −k , [ ] 32, 594.2, 2.14, 38.4o = −k  

For comparison, the simulations have been carried out using the same parameters and initial 

conditions as in [13] 

J = 0.0002175 kg/m2, M = 1.3608 kg, m = 0.096 kg, l = 0.0592 m, and k = 186.3 N/m, 

1(0) 0.025 mη = , 2 (0) 0 m / sec.η = , 1(0) 0 rad=z , 2 (0) 0 rad / secz = . 

Simulation results are depicted in Figs. 4-8.  Fig. 4 shows responses of the closed-loop system 

for x and θ  using two different modes. First, only the proposed combined control law has 

been used without the unmatched uncertainty approximation (i.e. 0dy = ). Then, the proposed 

dy  has been employed. Note that when the unmatched uncertainty is compensated by dy  the 

responses converge faster. The closed-loop system responses are depicted in Figs. 5 and 6. 

Approximation of the matched uncertainty ∆  using ad Ru u+ , the normalised norm of adaptive 

weights and state estimation errors are presented in Fig. 5. Fig. 6 shows the filtered reference 

signal *y  and the validity of the conic sector bound (5) on the unmatched uncertainty. Note 

that  1 0.2 1c = ≤ , which satisfies the required condition in Assumption 2. 
 

Fig. 7 shows the response of the closed-loop system for x, θ , the control torque τ  and the 

convergence rate of  x and θ  in the logarithmic scale.  Note that the convergence rate of the 

proposed approach is faster than that of the backstepping-based controller using the method in 

[13].  
 

To verify the robustness of the proposed controller, the simulation is repeated in the presence 

of parameters uncertainties with ˆ 1.1 ,m m=  ˆ 1.1k k= , and ˆ 1.1J J= . Note that these 

uncertainties can be embedded in the matched and unmatched uncertainties and since the 

proposed approach compensates these uncertainties adaptively, the approach is robust against 

parameters uncertainties. The simulation results, presented in Fig. 8, illustrate the robustness 

of the closed-loop system. As this figure shows, the proposed controller stabilises the system 

while the classical backstepping controller does not stabilise the system. In particular, the 

angular movement θ  does not tend to the equilibrium point.  In general, the performance of 



      

the backstepping controller  for the class of the system  in the form of (1) is inappropriate in 

comparison with the proposed NN controller. 
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Fig. 4. Response of the TORA system in which dashed and solid lines present the system response 

without the unmatched uncertainty compensation (i.e. when 0dy =  ) and with unmatched 
uncertainty cancellation using the proposed dy , respectively. 
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Fig. 5.  The closed-loop signals of the TORA system: (a) Matched uncertainty cancellation;  

(b) Normalized norm of weights; (c) States estimation error 
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 Fig. 6.  The closed-loop signals of the TORA system: (a) the filtered reference signal, 

 (b) the validity of the conic sector bound of the unmatched uncertainty 
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Fig. 7.  The responses of the TORA without the parameter uncertainties in which the solid and dotted 

lines show the action of the proposed and backstepping controllers, respectively. 
 



      

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

θ 
(r

ad
)

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

x 
(m

)

0 1 2 3 4 5 6 7 8 9 10
-20

0

20

Time(sec.)

τ 
(N

.m
)

 
Fig. 8.  The responses of the TORA with parameters uncertainties in which solid and dotted lines show 

the action of the proposed and the classical backstepping controllers, respectively. 
 

6 Conclusions 

A direct adaptive output feedback stabilization method using neural networks techniques for 

non-minimum phase nonlinear systems has been proposed in this paper. The proposed method 

is robust with respect to the matched and unmatched uncertainties, and relies on the state 

estimation. The approach can be applied to a general class of uncertain nonlinear systems, 

from which a linear approximation can be derived. Using the Lyapunov direct method the 

ultimate boundedness of the states and the NN weights have been achieved. The theoretical 

results have been successfully applied to a TORA model, which show that the method yields 

the desired responses in comparison with other nonlinear control design methods such as the 

backstepping method.  
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