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Abstract: This paper presents a new steady state Kaman filter for tracking high maneuvering targets. 

The α β−  and the α β γ− −  filters are the steady-state Kaman filters for tracking constant speed and 

constant acceleration targets, respectively. However, these filters can not predict high maneuvering 

targets with good accuracy. The proposed filter is called α β γ η− − −  filter. In this filter η  is the gain 

of jerk for tracking of high maneuvering targets. Simulation results show good performance of the 

proposed filter as compared to α β γ− −  filter to track the jerky movements. 
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Nomenclatures: 
:x     state vector ( 1n × ) 
:F     transformation matrix ( n n× ) 
:u     process noise 
:v     measurement noise 
:x     position state 
:x&     velocity state 
:x&&     acceleration state 
:x&&&     jerk state 
:T     sampling time 

      :h     observablility matrix  (3 n× ) 
      :a      correlation parameter 
      :jQ   variance of process noise  
      :Q     covariance matrix of process noise ( n n× ) 

:N     variance of target jerk 
2 :jσ    variance of target jerk 
:R      variance of measurement noise 

2 :vσ    variance of measurement noise 
:P      state covariance matrix ( n n× ) 
:ijP    elements of P  

:S       updated state covariance matrix ( n n× )  
:w      gain of filter 
:ig    elements of  w  

:α      position gain 
:β     velocity gain 
:γ      acceleration gain 
:η      jerk gain 
:λ      tracking index 
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1.  Introduction 
 

The key point to successful target tracking is to extract useful information about the 

target state from the observed data. In order to achieve this goal, one needs a useful target 

model. The simplest model for a target, the so-called white-noisy acceleration model is used 

when the maneuver is small or random [1], [2]. The other simple model is the Wiener-process 

acceleration model that is referred to as the constant-acceleration model [1], [2]. On the other 

hand, the Singer acceleration model is a standard model for targets with maneuvers [3]. This 

model assumes that the target acceleration is a zero-mean stationary first-order Markov 

process. For high maneuvering targets, a jerky model is proposed by Mehrotra and Mahapatra 

[4]. In this method, the jerk is modeled as a zero-mean first-order Markov process, in the 

same way as the Singer acceleration model.  

One of the widely used approaches for state estimation is the Kalman filter [5], [6]. 

However, Kalman filter imposes large amount of computations. In order to reduce 

computational burdens, constant-gains Kalman filters are used. The α β−  and the α β γ− −  

filters are the steady-state Kaman filters for target tracking with constant speeds and constant 

accelerations, respectively [7]-[10]. For high maneuvering targets (i.e. targets with changing 

accelerations), the performance of these steady-state filters deteriorates. To improve this 

shortcoming, an extension of these filters is proposed in this paper. This filter is called the 

α β γ η− − −  filter, in which η  is the gain for jerk. Simulation results show good 

performance of the proposed filter as compared to the α β γ− −  filter for tracking jerky 

movements. 

The rest of this paper is organized as follow. Section 2 defines the jerk model. Section 3 

presents gain computations for the proposed filter. Section 4 gives the simulation results. 

Finally, Section 5 concludes the paper. 

 



2.   Jerk Model for Target Motion 
There are many types of target motion, especially those involving the modern generation 

of highly maneuvering aerospace vehicles that call for better tracking performance than what 

is provided by acceleration models. The reason for the inadequate tracking performance of 

current models is that the higher order derivatives in the case of very highly maneuvering 

targets are not insignificant, leading to model inaccuracies when terms only up to the second 

or third orders derivatives are considered. 

The state model for the target motion is defined by the following vector-matrix equations [4]: 

( 1) ( ) ( ) ( ),k k k k+ = +x F x u                                                                                                    (1) 

( 1) ( 1) ( 1) ( 1),y k k k v k+ = + + + +h x                                           (2) 

where [ ]Tx x x x y y y y z z z z=x & && &&& & && &&& & && &&&  is the state vector, y is the output, 

u and v are white noises denoting  the process and the measurement noises, respectively, all 

with appropriate dimensions. Moreover, the transition matrix and the observation vector are 

2 3

2

2 3

2

2 3

2

2 6

2

2 6

2

2 6

2

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1

T T

T

T T

T

T T

T

T
T

T

T
T

T

T
T

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 




 

=F







                               (4) 

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 ,
0 0 0 0 0 0 0 0 1 0 0 0

 
 

=  
 
 

h                              (5) 



in which T  is the sampling time interval. Matrix h shows that only the position sensor is used 

for target tracking. The covariance matrix for this system is equal to 
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where 22j jQ aσ=  is the variance of the process noise in the jerk model, in which a  is the 

correlation parameter and 2
jσ  is the variance of the target jerk.  

In the next section, for the ease of presentation, only the state variables along the x axis (i.e. 

, , ,x x x& && and x&&&) will be considered. For other axes (i.e. y and z) the same equations apply. 

This fact can also be observed from matrices F and Q in (4) and (6), respectively. 

 

3. The α β γ η− − −  Filter 

The following equations hold for the Kalman filter in steady-state conditions [9]: 

( | ) ( 1| 1),k k k k= − −P P  

( 1| ) ( | 1),k k k k+ = −P P  

( ) ( 1),k k= −w w  

where w  is the gain of the filter. The components of the steady-state covariance matrix is 

denoted as 



lim ( | ) .ijk
k k

→∞
 =  P P                                                          (7) 

Components of the one-step prediction of the covariance matrix are defined as 

lim ( 1| ) .ijk
k k

→∞
 + =  P M                                                      (8) 

The updated covariance in Kalman filter is defined as 

( 1| ) TS k k R= + +hP h ,                                                   (9) 

where h  is the same as before, 2
vR σ= , in which 2

vσ  is the variance of the measurement 

noise. Using (5), (8) and (9), the updated covariance will be 

11 .S m R= +                                                         (10) 

Hence, the Kalman filter gain becomes 
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Hence, the updated covariance matrix becomes 

( 1| 1) ( ) ( 1| ).k k k k+ + = − +P I wh P                                        (13) 

Using (7), (8) and (13), it gives 

[ ] ( )[ ].ij ij= −P I wh M                                                   (14) 

Therefore, [ ]ijP  is 
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Hence, the covariance prediction equation in Kalman filter is 



[ ]1 1( | ) ( 1 | ) ( ) [ ].T
ijk k k k− −= + − =P F P Q F P                                (16) 

If [ ]ij =P P , then, according to (14) the elements of P  are  

2 7 2 3 2
11 12 13 14 22

3 4 4 5 6
23 24 33 34 44

1 1(1,1) 2
126 3

1 1 1 1 ,
3 4 6 36

jP m a T Tm T m T m T m

T m T m T m T m T m

σ= − − + − +

− + + − +
                        (17) 

6 2 3
12 22 23 24

3 4 2 5
13 33 34 14 44

1 3 2(1, 2) (2,1)
36 2 3

1 5 1 1 ,
2 12 2 12

P P m aNT Tm T m T m

Tm T m T m T m T m

= = + − + −

− − + + −
                         (18) 

5 2
13 23 33

3 2 4
34 14 24 44

1 1(1,3) (3,1)
15 2

2 1 ,
3 6

P P m aNT Tm T m

T m Tm T m T m

= = − − +

− − + +
                                 (19) 

4 2 3
14 33 34 44

1 1 1(1, 4) (4,1) ,
12 2 6

P P m aNT Tm T m T m= = + − + −                         (20) 

5 2 2 3
22 23 24 33 34 44

1 1(2, 2) 2 ,
10 4

P m aNT Tm T m T m T m m= − − + + − +                     (21) 

44(4, 4) 2 ,P m aNT= −                                                    (22) 

4 2 3
23 33 34 24 44

1 3 1(2,3) (3, 2) ,
4 2 2

P P m aNT Tm T m Tm T m= = + − + − +                  (23) 

3 2
33 34 44

2(3,3) 2
3

,P m aNT Tm T m= − − +                                      (24) 

2
34 44(3, 4) .P m aNT Tm= + −                                               (25) 

where 2
jN σ=  and 2

jσ  was defined before. 

On the other hand, according to (15), elements of [ ]ijP , which are designated with 

( , ), ( 1, , 4)PP i j i j= = K  for convenience, are equal to 
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3 1 3(1, ) ( ,1) , 3, 4,k kPP k PP k m m g k= = − =                                    (28) 
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Equating ( , )P i j  and ( , )PP i j  yields 
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It should be noted that two different 34m  are obtained in (31) and (32), which is due to the 

different elements of ( , )P i j  and ( , )PP i j . Equating (17) and (26) for l=1 and using (30) to 

(36) gives 
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The gains of this filter must cancel out the effects of T in (37). The gains are selected as [1] 
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Then, using (31) and (32) 4g  can be calculated as 
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Therefore, according to (38) and (39), 4g  is equal to 
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In steady-state tracking filters, gains are computed based on the tracking index. To compute 

the tracking index and the gains, some additional equations are needed. By equating (22) and 

(29), another form of 14m can be obtained as  
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Using (12) and (42), a new set of equations for ijm are obtained as follows: 
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Equating (17) and (26) for 1l =  and using (42) to (49) gives 
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To determine the tracking index, equating (42) and (12) for 4i =  results in  
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Using the obtained gains and the tracking index in (51) and replacing them into (37) and (50) 

yields 
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By calculating λ  (using 2 7aNT Rλ = ) and putting that into (54), α  can be obtained. Then, 

η  can be calculated using (51). Finally, β  and γ  can be calculated using the following 

equations: 
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γ ηβ=                                                                  (56) 

It should be noted that, in the process of finding these gains, the equations usually yield 

multiple answers, form which only the positive answers are acceptable. Moreover, from the 

predefined range of each gain, one can find the correct answer form the multiple positive 

solutions. 

 

4.  Simulation Results 

In this section, a comparison between the proposed filter and the α β γ− −  filter is 

demonstrated throughout simulations. The variance of the process noise for the jerk model is 

22j jQ aσ=  where 30.1 /j m sσ = . It is assumed that the radar measurement sequences are 

transformed from the polar coordinates to the Cartesian coordinates before the track-while-

scan (TWS) process takes place [1]. The measurement covariance matrix is defined as 
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where 11R , 22R  and 33R  are variances in x,  y, and z directions, respectively, and are equal to 

22500 m . Moreover, the correlation parameter is 0.7a =  and the sampling time interval is T 

= 0.5 sec., which is the time of the radar antenna scanning a revolution. The jerk model, 

which is used for all filters, is the same model as Mehrotra and Mahapatra have proposed in 

[4]. For the initial position equal to [ ]0 0 1000 T m, and the initial velocity of 

[ ]100 0 10 0 T
−  m/sec, the gains are calculated as 

0.9493α = , 1.2004β =  

0.0213γ = , 3.7695e 004η = −  

It should be noted that the gains of the α β γ− −  filter are not necessarily the same as the 

proposed α β γ η− − −  filter (although the derivation procedure is similar). The reader may 

refer to reference [1] on how to find the gains of the α β γ− −  filter. 



Table 1: Jerk of the target for different time intervals. 
time interval target  

movement From To 
0 sec.t =  250 sec.t =  Jerk = 30  m/s  

251 sec.t =  500 sec.t =  Jerk = 30.25  m/s  
 

Table2: RMSE in x, y and z axes in 500 sec 

 RMSE in x axis RMSE in y axis RMSE in z axis 
Proposed filter 50.18 42.56 43 
α β γ− −  filter 123.3675 141 202 

 

The jerk of the target for different time intervals is summarized in Table 1. Since the most 

important issue in target tracking applications is the position error, only position errors are 

shown in simulation results. 

Figs. 1–3 show the position errors in the x, y, and z directions, respectively. As these figures 

show, when the jerk is zero (i.e. the target is moving with constant acceleration) the α β γ− −  

filter performs slightly better than the proposed filter in this paper. On the other hand, when 

the target has jerky movements, the error of α β γ− −  filter increases or even may loose the 

target. The reference tracking path for the α β γ η− − −  filter is depicted in Fig. 6 in three 

dimensions. It should be mentioned that the same tracking path is used for the α β γ− −  

filter. For comparison, the Root-Mean-Square (RMS) errors for 500 sec. of simulations are 

given in Table 2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Position tracking error on the x-axis  
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Fig. 2: Position tracking error on the y-axis  
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Fig. 3: Position tracking error on the z-axis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.4: The model path and the tracking path in 3D 
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5.  Conclusion 

In this paper, a new filter, called the α β γ η− − −  filter, was introduced. The proposed filter 

is an extension of the α β γ− −  filter, where η  is the gain for the target jerk. These filters are 

constant-gain filters and have lower calculation volume as compared to the Kalman filters. In 

addition, their tracking accuracy is acceptable. It was shown by simulations that the proposed 

filter can follow jerky models with high maneuvering properties, with good accuracy as 

compared to the α β γ− −  filter.  
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